Comparative Case Study

Cambridge HTHV vs. Direct Fired Recirculation

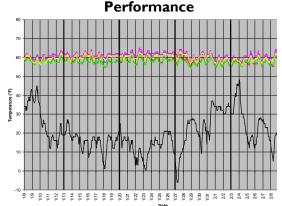
Central Ohio Warehouses

Cambridge HTHV Space Heaters

Operating Costs

Based on 6,153 Heating Degree Days @ 65°

\$0.16/ft² Gas cost @ \$1.00/therm \$0.01/ft² Electric cost @ \$0.08/kWh


\$0.17/ft² Total cost

Building Specifications

- 150,000 ft² x 26' high
- R-15 Roof / R-12 Wall

Heating System

- (2) Cambridge HTHV Space Heaters
- 2900 MBH total
- 14.000 CFM total
- 10 HP total intermittent

±5° indoor temperature variation from 60° setpoint

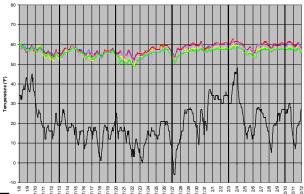
Direct Fired Recirculation Heaters

Operating Costs

Based on 6,153 Heating Degree Days @ 65°

\$0.21/ft² Gas cost @ \$1.00/therm \$0.06/ft² Electric cost @ \$0.08/kWh

\$0.27/ft² Total cost


Building Specifications

- $210,000 \text{ ft}^2 \times 28' \text{ high}$
- R-19 Roof / R-13 Walls above 8' R-1.5 Walls below 8'

Heating System

- (2) Direct Fired Recirculation
- Manual 90/10 controls*
- 4800 MBH total
- 36,000 CFM total
- 30 HP total continuous

Performance

 \pm 12° indoor temperature variation from 60° setpoint

Summary % less total energy with less temperature variation

The Cambridge system used over 37% less total energy with less temperature variation. If the 210,000 ft² facility had installed a Cambridge HTHV system they could have saved approximately \$21,000/year operating at \$0.17/ft² vs. \$0.27/ft².

^{*}ANSI Z83.4 standard requires 20% outside air min.